Este hombre ha cazado al gato más famoso de la física
0
De todos los animales imaginarios de la ciencia, el gato de Schrödinger es posiblemente el más famoso. Ese felino que está vivo y muerto a la vez hasta que alguien lo comprueba sirvió para analizar los principios básicos de la mecánica cuántica. Uno de ellos dice que una partícula puede estar en dos estados diferentes al mismo tiempo, como el gato que vive y está muerto a la vez. Durante décadas, aquel gato ideado por Erwin Schrödinger en 1935 no fue más que un ejercicio mental. Tuvieron que pasar dos generaciones de físicos para que naciera el hombre capaz de atraparlo. Ese hombre es el francés Serge Haroche. Durante el banquete de la gala de los premios Nobel en 2012, Haroche no dudó en explicar que él y su colega estadounidense David Wineland habían ganado el prestigioso galardón por "crear una versión en miniatura del famoso gato". En concreto, lo que Haroche había logrado era cumplir un sueño perseguido por el mismísimo Albert Einstein. A principios del siglo XX, el genio alemán había predicho algunas de las propiedades de los fotones. El fotón era como un superhéroe de la física: una partícula y una onda a la vez, podía estar en dos lugares al mismo tiempo y si se lo intentaba detener, desaparecía. En dos experimentos fundamentales en 1996 y 2006, Haroche y su equipo atraparon por primera vez fotones en una trampa magnética y pudieron observarlos durante fracciones de segundo, todo un récord.
Domar a ese gato de Schrödinger en miniatura que es el fotón puede traer una nueva generación de comunicaciones y computación cuántica virtualmente imposibles de espiar o hackear. Esa posibilidad es especialmente interesante tras las revelaciones de que los gobiernos espían a millones de personas en Internet. La física cuántica también promete crear capas de invisibilidad o teletransportación, "aunque todo tiene sus límites", advierte Haroche.
"No podremos teletransportar objetos macroscópicos", explica Haroche, que ha visitado Madrid para impartir una conferencia en el Instituto Francés. De hecho, el Nobel considera que los ordenadores cuánticos, basados en superposiciones de estados (vivos y muertos a la vez) en lugar de en ceros y unos como en la actualidad, están aún lejos. "Todo el mundo habla del ordenador cuántico, pero yo no creo que vaya a ser realidad en el futuro próximo", comenta.
"Las leyes de la cuántica se pueden usar para comunicarse sin que sea posible espiar, ni siquiera usando un ordenador cuántico", reconoce Haroche. "Esta es la razón por la que hay gobiernos y agencias interesadas en desarrollar este tipo de investigaciones". Tras las revelaciones de que la NSA de EE.UU. espiaba los datos de millones de personas en Internet, se supo hace unos meses que la misma agencia lleva tiempo desarrollando un ordenador cuántico. Pero Haroche señala que a pesar del interés incipiente por esta nueva tecnología, posiblemente el tiro les salga por la culata, porque las aplicaciones de las propiedades cuánticas pueden ser totalmente inesperadas. "Lo que nos interesa ahora de este campo no es necesariamente lo que traiga adelantos en el futuro. Si miramos atrás, la mayoría de los adelantos tecnológicos no han sido predecibles. La investigación básica descubre nuevos fenómenos y la forma en la que se usan es impredecible. Todas las aplicaciones de los láseres, las resonancias magnéticas, los relojes atómicos, todas son aplicaciones que nadie predijo", advierte el francés.
Una de las aplicaciones 'inesperadas' podría surgir de la llamada simulación cuántica. "Es un simulador cuántico porque usa sistemas cuánticos para imitar lo que sucede en el mundo real. Esto nos puede mostrar cómo construir y sintetizar nuevos materiales", explica el físico. La simulación cuántica pone "átomos o fotones en una forma determinada e imita su comportamiento en un objeto sólido real, pero a escala diferente. En un objeto sólido los átomos pueden estar a una distancia de una diez mil millonésima parte de un metro. Aquí podemos ponerlos a distancias 1.000 o 10.000 veces mayores, controlar sus interacciones y observar lo que sucede, que es lo mismo que pasa en ciertos materiales reales que no podemos observar a ese detalle", explica.
EL FUTURO DE LA ENERGÍA
¿Y para qué servirán esos materiales? Por ejemplo, para generar superconductores a temperatura de ambiente. Esto, a su vez, tendría beneficios evidentes en la vida cotidiana, detalla Haroche. "La superconductividad a temperatura ambiente permitiría transportar electricidad sin tener ninguna pérdida. Tendría un impacto enorme en el terreno de la energía". A sus 69 años, Haroche dice que el Nobel ha cambiado su vida porque ahora le llaman los periodistas y le preguntan por física cuántica, algo que le podía parecer impensable hasta hace solo unos años. Por lo demás, a parte de viajar por el mundo dando conferencias, su equipo del College de France sigue perfeccionando sus trampas para esos gatos en miniatura que son los fotones.
"Estamos intentando hacerlo mejor. Preparar estados de unos cuantos fotones que se llaman estados no clásicos, es decir, que exhiben propiedades cuánticas. Esos estados son muy frágiles, así que intentamos protegerlos para mantener sus propiedades cuánticas por el mayor tiempo posible", comenta. ¿Y por qué los fotones son como el gato? Los fotones mantienen "la superposición de dos estados que tienen diferentes propiedades e intentamos mantener esa ambigüedad cuántica el mayor tiempo posible". Así, aunque atrapado, el gato sigue estando vivo y muerto a la vez.
Domar a ese gato de Schrödinger en miniatura que es el fotón puede traer una nueva generación de comunicaciones y computación cuántica virtualmente imposibles de espiar o hackear. Esa posibilidad es especialmente interesante tras las revelaciones de que los gobiernos espían a millones de personas en Internet. La física cuántica también promete crear capas de invisibilidad o teletransportación, "aunque todo tiene sus límites", advierte Haroche.
"No podremos teletransportar objetos macroscópicos", explica Haroche, que ha visitado Madrid para impartir una conferencia en el Instituto Francés. De hecho, el Nobel considera que los ordenadores cuánticos, basados en superposiciones de estados (vivos y muertos a la vez) en lugar de en ceros y unos como en la actualidad, están aún lejos. "Todo el mundo habla del ordenador cuántico, pero yo no creo que vaya a ser realidad en el futuro próximo", comenta.
"Las leyes de la cuántica se pueden usar para comunicarse sin que sea posible espiar, ni siquiera usando un ordenador cuántico", reconoce Haroche. "Esta es la razón por la que hay gobiernos y agencias interesadas en desarrollar este tipo de investigaciones". Tras las revelaciones de que la NSA de EE.UU. espiaba los datos de millones de personas en Internet, se supo hace unos meses que la misma agencia lleva tiempo desarrollando un ordenador cuántico. Pero Haroche señala que a pesar del interés incipiente por esta nueva tecnología, posiblemente el tiro les salga por la culata, porque las aplicaciones de las propiedades cuánticas pueden ser totalmente inesperadas. "Lo que nos interesa ahora de este campo no es necesariamente lo que traiga adelantos en el futuro. Si miramos atrás, la mayoría de los adelantos tecnológicos no han sido predecibles. La investigación básica descubre nuevos fenómenos y la forma en la que se usan es impredecible. Todas las aplicaciones de los láseres, las resonancias magnéticas, los relojes atómicos, todas son aplicaciones que nadie predijo", advierte el francés.
Una de las aplicaciones 'inesperadas' podría surgir de la llamada simulación cuántica. "Es un simulador cuántico porque usa sistemas cuánticos para imitar lo que sucede en el mundo real. Esto nos puede mostrar cómo construir y sintetizar nuevos materiales", explica el físico. La simulación cuántica pone "átomos o fotones en una forma determinada e imita su comportamiento en un objeto sólido real, pero a escala diferente. En un objeto sólido los átomos pueden estar a una distancia de una diez mil millonésima parte de un metro. Aquí podemos ponerlos a distancias 1.000 o 10.000 veces mayores, controlar sus interacciones y observar lo que sucede, que es lo mismo que pasa en ciertos materiales reales que no podemos observar a ese detalle", explica.
EL FUTURO DE LA ENERGÍA
¿Y para qué servirán esos materiales? Por ejemplo, para generar superconductores a temperatura de ambiente. Esto, a su vez, tendría beneficios evidentes en la vida cotidiana, detalla Haroche. "La superconductividad a temperatura ambiente permitiría transportar electricidad sin tener ninguna pérdida. Tendría un impacto enorme en el terreno de la energía". A sus 69 años, Haroche dice que el Nobel ha cambiado su vida porque ahora le llaman los periodistas y le preguntan por física cuántica, algo que le podía parecer impensable hasta hace solo unos años. Por lo demás, a parte de viajar por el mundo dando conferencias, su equipo del College de France sigue perfeccionando sus trampas para esos gatos en miniatura que son los fotones.
"Estamos intentando hacerlo mejor. Preparar estados de unos cuantos fotones que se llaman estados no clásicos, es decir, que exhiben propiedades cuánticas. Esos estados son muy frágiles, así que intentamos protegerlos para mantener sus propiedades cuánticas por el mayor tiempo posible", comenta. ¿Y por qué los fotones son como el gato? Los fotones mantienen "la superposición de dos estados que tienen diferentes propiedades e intentamos mantener esa ambigüedad cuántica el mayor tiempo posible". Así, aunque atrapado, el gato sigue estando vivo y muerto a la vez.
El arte de vivir en una rueda de hámster
0
Para el dúo artístico formado por Ward Shelley y Alex Schweder, el mundo estos días es más redondo que nunca: tiene 7,6 metros de diámetro y consiste en una rueda que, durante diez días, tienen que girar para pasar de la camas al baño o la cocina. La instalación se llama In Orbit y está en Brooklyn.
Hoy sábado, estos dos artistas cumplen su noveno día en esta versión de diseño de un carrusel dantesco, que recuerda por momentos a aquella nave ingrávida de 2001: Una odisea en el espacio, la cual el boca a oreja ha acabado por definir como una gigantesca rueda de hámster.
"Aunque la mayoría ha visto en ella la interpretación de la rueda de hámster, de ese mundo que parece que avanza pero solo da vueltas sobre sí mismo, nuestra idea era más sencilla: demostrar cómo la arquitectura moldea a través de sus espacios las relaciones entre las personas", explica a Efe Shelley, el que está en la parte de abajo de la rueda y quien atiende a la prensa.
In Orbit se exhibe en la galería Boiler, que la casa Pierogi 2000 tiene en el distrito neoyorquino de Brooklyn, y ha conseguido sorprender con su experimento artístico-sociológico-filosófico, lo que sus autores llaman "performance arquitectónica" y que les tiene todo el día dando vueltas en esa rueda de solo 60 centímetros de ancho. En total, la obra tiene 19,2 metros cuadrados habitables.
Por encima de todo, para los artistas está siendo una experiencia física. "Esto está siendo mucho más duro y, sobre todo, incómodo de lo que habíamos pensado. Estamos todo el día adaptándonos a esta situación. En cuanto nos bajemos de aquí, lo primero que haré será darme una ducha", dice Shelley.
Lleva nueve días sin ver a Schweder, con quien proyectó y construyó el que sería su jaula artística, ya que, por razones técnicas de funcionamiento de esta rueda, ambos artistas tienen que estar en el diámetro opuesto de la circunferencia y se condenaron a no encontrarse.
Así, su relación con Schweder se ha reducido a mensajes utilitarios básicos. "Es una auténtica relación de poder, en la que la generosidad, la cooperación y la confianza en el otro es fundamental para que funcione. Tenemos que coordinar cada acción, pero no nos escuchamos bien, así que nos comunicamos por sms o por mail y te aseguro que no nos enrollamos mucho", asevera Shelley.
La rueda tiene su mininevera, su cocina y su microondas y hasta se han llegado a comer salchichas y huevos. "Tenemos todo lo que necesitamos. Incluido un váter químico, que no es lo más cómodo del mundo, pero no es peor que el de un avión", asegura.
Todo lo que maneja líquidos, como la cocina o el baño, así como las perchas o los cubos de basura, están colgados de tal manera que siempre está en la misma posición.
Y llegada la hora de dormir, por fin la rueda se para. "Es una especie de refugio psicológico. Acabo agotado todos los días y duermo más horas que nunca, unas ocho o nueve. Es porque estoy todo el rato muy tenso. Parece que el de arriba corre más riesgo, pero abajo el esfuerzo que hay que hacer es mucho mayor", se justifica.
Ward Shelley y Alex Schweder se conocieron en 2005 en Roma, haciendo una beca en la Academia Estadounidense de la ciudad y desde entonces compartieron su interés por la repercusión social de la arquitectura, hilo argumental de sus instalaciones Estabilidad, que exhibieron en Seattle en 2009, o Counterweight Roommate (algo así como "compañero de piso contrapeso"), que se vio en 2011 en Basilea.
In Orbit es su obra con mayor repercusión. "Ha sido bonito ver que estos días se entretenían con la atención de los medios o con una gran asistencia de público, algo que no esperábamos. Y, claro, muchos amigos también han venido a vernos. El aburrimiento no ha sido un problema", explica.
Y aunque en un principio desecharon una interpretación demasiado profunda o metafórica de su experimento, ahora reconoce que ha aprendido una lección.
"A pesar de que esta rueda que no va a ningún lado y parece que todo es repetición, para mí cada momento ha sido único y ha requerido toda mi concentración. Eso me demuestra que la estructura física no es tan importante como la actitud", concluye.
Mañana, por fin Ward Shelley y Alex Schweder recuperarán su vida normal. In Orbit seguirá expuesta, ya sin habitantes que la hagan circular, hasta el 5 de abril.
Suscribirse a:
Entradas (Atom)
Idioma del Blog
Conóceme
Mi lista de blogs
-
-
-
Cats GatosHace 5 años
-
RE JAJAJAHace 7 años
-
Ecuaciones matemáticas más hermosasHace 8 años
-
-
-
Anime & GameHace 11 años